Vol. 18 no. 1 2002
Pages 130-139

&

The Binding Database: data management and
interface design

Xi Chen’, Yuhmei Lin", Ming Liu"? and Michael K. Gilson-*

"Center for Advanced Research in Biotechnology, University of Maryland

Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA

Received on May 23, 2001; revised on August 10, 2001; accepted on August 20, 2001

ABSTRACT

Motivation: The large and growing body of experimental
data on biomolecular binding is of enormous value in
developing a deeper understanding of molecular biology,
in developing new therapeutics, and in various molecular
design applications. However, most of these data are
found only in the published literature and are therefore
difficult to access and use. No existing public database has
focused on measured binding affinities and has provided
query capabilities that include chemical structure and
sequence homology searches.

Methods & results: We have created Binding DataBase
(BindingDB), a public, web-accessible database of mea-
sured binding affinities. BindingDB is based upon a
relational data specification for describing binding mea-
surements via Isothermal Titration Calorimetry (ITC) and
enzyme inhibition. A corresponding XML Document Type
Definition (DTD) is used to create and parse intermediate
files during the on-line deposition process and will also
be used for data interchange, including collection of data
from other sources. The on-line query interface, which
is constructed with Java Servlet technology, supports
standard SQL queries as well as searches for molecules
by chemical structure and sequence homology. The
on-line deposition interface uses Java Server Pages and
JavaBean objects to generate dynamic HTML and to
store intermediate results. The resulting data resource
provides a range of functionality with brisk response-
times, and lends itself well to continued development and
enhancement.

Availability: The BindingDB is publicly available at http:
//www.bindingdb.org. The database schema and DTD
file are available at http://www.bindingdb.org/bind/entity_
report.html, and http://www.bindingdb.org/bind/deposition/
xml/BindingDB.xml, respectively.

Contact: gilson@umbi.umd.edu

*To whom correspondence should be addressed.
2Present address: NovaScreen, 7170 Standard Drive, Hanover, MD 21076,
USA.

INTRODUCTION

The noncovalent association of molecules is of fundamen-
tal importance in biology. Indeed, almost every life pro-
cess at the molecular level involves noncovalent associ-
ation at some level of specificity. Examples include the
action of hormones at their receptors, the distinctions be-
tween self and nonself molecules made by the immune
systems, and the specificity of catalysis by enzymes. Sim-
ilarly, many medications act by binding and modulating
the activity of targeted biomolecules. Indeed, the design
of such targeted molecules is of substantial commercial
importance in the pharmaceutical industry, and molecu-
lar recognition is of increasing interest in chemistry be-
cause of its relation to catalysis, host—guest chemistry, and
self-assembling systems. As a consequence, the scientific
literature contains a large and growing body of experi-
mental data on what molecules bind each other and how
strongly they bind. These data are of great value in molec-
ular design applications, and also as a basis for develop-
ing a deeper understanding of the physical chemistry of
noncovalent binding. However, binding measurements are
currently difficult to find and use because of the limitations
of paper publication. Even on-line literature databases of-
fer no easy way to discover, say, all binding measurements
involving some molecule of interest.

For these reasons, a workshop in 1997 considered
the possibility of developing a scientific database
focused on binding thermodynamics. Participants
included representatives from academic, industrial,
and government laboratories. The resulting report
(http://www.bindingdb.org/update/workshop_rep1b.html)
strongly endorsed the development of a binding database
and proposed the following guidelines:

e The database should include binding affinities for a
variety of molecules, including biopolymers such as
proteins, nucleic acids and carbohydrates, as well as
small organic molecules such as drug candidates and
synthetic host and guest molecules.

e To the extent possible, experimental details should be

130

© Oxford University Press 2002

BindingDB

included to support sophisticated interpretation and
evaluation of the data.

e A wide range of queries should be supported, including
SQL queries based on textual and numerical criteria,
and nonSQL queries such as chemical substructure and
BLAST sequence searches.

e The database should be a public resource accessible
via the WWW.

e Every effort should be made to promote direct deposi-
tion of new binding data by experimentalists.

Meeting these goals posed a number of technical chal-
lenges, many of which also are faced by developers of
other scientific databases. The Binding DataBase (Bind-
ingDB) project (Chen et al., 2001) has addressed these
challenges and is now in operation at www.bindingdb.org.
The present paper describes the database and explains the
technical approaches used to implement it. In particular,
the following issues are addressed.

Data management

Today’s biomolecular databases use various data man-
agement approaches, including structured flat files
(STAR/mmCIF; Westbrook and Bourne (2000); ASN.1;
Steedman (1993); Benson et al. (1999), and XML-based
methods), relational DataBase Management Systems
(DBMS’; Hutsman et al., 1991; Kumar et al., 2000)
object-relational DBMSs (Zhu and Zhang, 1999; Carazo
and Stelzer, 1999) and object-oriented DBMSs (Aberer,
1994; Nakata et al., 1999). These approaches are defined
and discussed elsewhere (Achard er al., 2001). The
present paper explains the rationale for and implemen-
tation of BindingDB’s data management system, which
combines a relational DBMS with flat files for sequence
data and XML files for data interchange.

Data organization and content

Once a DBMS has been chosen, the next step is to
determine exactly what data will be stored and how they
will be organized. The content is determined primarily
by the scientific goals of the database and, in the case of
BindingDB, was defined in large part by the scientists who
attended the 1997 workshop. The organization of the data
is important because, among other things, it determines
how easily the database can be expanded and amended in
the future. The content of BindingDB is organized into
a relational data dictionary and an XML Document Type
Definition (DTD).

Query and data retrieval

Perhaps the chief reason for establishing a database is
to facilitate the retrieval of the specific data that each

user needs. Ideally, a variety of query methods must be
supported. For example, users may wish to search for
binding reactions by molecule name, protein sequence,
chemical substructure, affinity, or combinations of the
above. The present paper describes the techniques used to
support these and other types of query in the BindingDB.

Data deposition

The collection of data plays a vital role in a database
but is rarely an easy task. A basic goal is to collect
as much data as possible, and accordingly to make the
deposition methods easy to access and use. In addition,
the requirement that the data be of high quality leads to
requirements for validation software and human curation.
On the other hand, budget constraints motivate maximal
automation of the deposition procedures, and any specific
realization must to some extent be a compromise among
these competing goals. For example, a client—server
application can be made easy to use and can provide
relatively strong assurances of data integrity, but it can
be difficult to distribute the software and keep it up to
date. On the other hand, online deposition via the WWW
maximizes accessibility, but web technology lacks the
flexibility that a stand-alone client can deliver. Which
method is preferred will depend upon the demands of
the individual project. The BindingDB has tried both
approaches and has settled for now on web deposition as
the preferred method because gathering data is critical at
this stage of the project and web-accessibility permits the
broadest possible dissemination of the deposition tools.

Usability

A user-friendly interface is essential if a database is
to be of value to the scientific community. The user-
interface of the BindingDB was designed according to
the principles of human—computer interactions, following
a staged process. The initial stage was establishment of
guidelines and prototyping. Feedback was then gathered
from a small group of potential users and revisions made
accordingly. A broader user survey was then done and
more detailed revisions were made. Details of this process
can be found in our previous paper and are not repeated
here (Chen et al., 2001).

DATA MANAGEMENT

BindingDB currently runs on a 600 MHz dual-processor
Windows NT server with 256 MB RAM and uses a
commercial relational DBMS, Oracle Enterprise Edition
Release 8.1.6, as its central data management system. The
relational model avoids data redundancy, which is relevant
here because data attributes are often repeated for multiple
binding measurements. For example, binding affinities
might be measured for two molecules over a range of
temperatures but with no other parameters varying. In

131

X.Chen et al.

addition, a commercial DBMS immediately provides a
number of valuable features, such as efficient query
procedures, scalability, and useful database administration
tools. There are also an array of training materials and a
pool of expert users. These attributes make the database
easier to develop and maintain. However, we have tried
to minimize our use of features unique to Oracle in order
to minimize the difficulty of porting to a different DBMS
should the need arise.

BindingDB’s relational DBMS is supplemented by
two sets of flat files. First, protein and nucleic acid
sequences are stored not only in the DBMS but also
in external files that can be searched with BLAST
(Altschul et al., 1997). Each sequence in an external
file contains a relational ID that is used to link back to
the appropriate data in the relational DBMS, allowing
integration of BLAST with SQL queries (see Integration
of NonSQL Query Functions). Second, BindingDB’s
WWW deposition interface generates an intermediate
XML file that is later parsed into the relational DBMS;
the XML files are also stored on disk to provide a parallel
view and an archive of the data. Each XML file contains a
coherent data ‘entry’ and provides an unfragmented view
of the data. In contrast, the data in the relational database
are scattered across multiple tables and linked only by
keys. The XML files are thus more appropriate for data
exchange and also represent a human-readable backup
for the relational database. Although XML files can be
searched, the BindingDB does not use them as the basis
for data queries because the performance would be much
slower than in the relational DBMS.

DATA ORGANIZATION AND CONTENT

The fundamental view of the data is that of an experiment
in which two reactants are dissolved in a reaction solution
and studied by an experimental technique with a specified
instrument at some pH, temperature and pressure. The
resulting raw data are interpreted in terms of a reaction
model—e.g. A + B <> AB—and processed quantitatively
with a data fitting method to yield a binding affinity and
other results characterizing the binding reaction. Related
experiments that are deposited together are grouped into
a single data entry, which is associated with one or
more citations. The BindingDB describes these data in a
relational data dictionary and in an XML DTD, as now
described.

Relational data dictionary

The current data dictionary comprises 35 database tables,
as illustrated in the Entity-Relation (ER) diagram in Fig-
ure 1 and defined in detail at http://www.bindingdb.org/
bind/entity_report.html. Data in these tables are organized
into Entries, each of which contains one or more sets of
binding measurements, along with literature citations and

database administrative information. An Entry might in-
clude studies of a single binding reaction as a function of
temperature and pH, or of a given protein’s interactions
with a collection of small-molecule ligands. The ENTRY
table contains an Entry ID that appears as a foreign key in
every entry-specific table. It also includes a descriptive ti-
tle of the entry, the deposition date, the measurement tech-
nique, and information on the entrant, the person entering
the data.

Although the relational model dictates a normalized
representation of the data and their relationships (Codd,
1972; Date, 1995), full normalization does not necessarily
produce the most efficient database system. A relational
database application should balance the goals that com-
monly invoked queries be executed rapidly and that the
data remain consistent through minimization of data re-
dundancy. Thus, although the BindingDB initially aimed
for complete data normalization, some denormalization
was later introduced for the sake of efficiency.

The tables other than the Entry table can be grouped into
four categories: experimental results and details, reactants,
reaction solution, and references. These categories are
now discussed in more detail.

Experimental results and details. The results tables are
at the core of the data dictionary because they contain
the final results along with links to all the methods,
conditions, etc. that pertain to these results. Because
the BindingDB aims to include significant experimental
detail, each measurement technique requires special
attention and a unique results table. To date, two tech-
niques have been included. The first, Isothermal Titration
Calorimetry (ITC), was selected because it provides a
relatively complete description of binding thermody-
namics and therefore yields a good data foundation for
other measurement techniques. The second technique,
enzyme inhibition, was selected because it is used for a
relatively large number of measurements, including many
that are of pharmacologic interest. The results tables are
also specific to the reaction model. Thus, separate tables
are included for ITC data interpreted with the binding
models A + B < AB and 2A + B < A;B. We initially
explored dictionary structures that could accommodate
all possible reaction models, but the resulting dictionar-
ies were complex, hard to query, and still incomplete,
whereas the current approach is straightforward to im-
plement, query, and extend. The dictionary currently
contains three results tables: ITC_RESULT_A_B_AB,
ITC_RESULT 2A B_A2B, and KIRESULT, for ITC
results with the two reaction models listed above, and for
enzyme inhibition with the A + B <> AB reaction model,
respectively.

The ITC results tables accommodate the range of
commonly measured thermodynamic data generated by

132

BindingDB

INSTRUMENT
PHBUFFER ss%ﬂfan SOLVENT DATA_FIT_METH INSTRUMENTID)
PHBUFFERID SOLVENTID DATA_FIT_METH_ID
NAME g NAME DATA_FIT_METH_DESC oot
_FIT_METH_| MODLE
HEAT_ION_BUFF unrosE SOURCE DATA_FIT_SOFTWARE [MANUFACT
COMMENTS eyt PURITY SOFTWARE_VERSION YEAR
BOR METH PUR_METH COMMENTS COMMENTS
COMMENTS| COMMENTS T
PHBUFFER_CONC SOLUTE CONC
PHBUFFERID (FK) SOLUTEID (FK) SOLVENT_FRACT
SOLUTION_ID (FK)| SOLUTION_ID (FK) SOLVENTID (FK) ITC_RESULT 2A.B A28
ENTRYID (FK) ENTRYID (FK) SOLUTION.ID (7 ® ENTRYID (FK)
[PHBUFFER_CONG) [cone () ITC_RESULT_2A_B_A2B_ID|
CONC_OR_FRACT]| CELL_COMPLEXID (FK)
s CELL_MONOMERID (FK)
ITC_RESULT_A_B_AB CELL_POLYMERID (FK)
ENTRYID (FK) CELL_REACT
ITC_RESULT_A_B_AB_ID CELL_REACT. SOURCE
CELL_REACT PURITY
CELL_REACT CELL_REACT PREP_METH
soLution of GELLPOMIIERD (10 VA Honon
L N
SOLUTION_ID) CELL_COMPLEXID (FK) VR PONWERID
ENTRYID (FK) CELL_REACT SOURCE SYR_COMPLEXID
TYP CELL_REACT PURITY SYR_REACT_SOURCE
PH_PRI O SEIF;LRRE?AC(_)TT,PREP,METH SYR_REACT_PURITY
TEMP_PREP X SYR_REACT_PREP_METH
COMMENTS :vn,MgNOMEmD‘ m)() -
YR_POLYMERID (FK) PH UncERT
SYR_COMPLEXID (FK)
SYR_REACT SOURCE TEMP UNGERT
SYR_REACT_PURITY
REVISION_HISTORY SYR_REACT_PREP_METH PRESS UNCERT
PREV_ENTRYID (FK) ION_STR
CURR_ENTRYID (FK) PH UNCERT ION_STR_UNCERT
CONTENT OF GHaNGE STOICH_FREE_PARAM
o TEMP UNCERT STOICH_PARAM
— FIT_SD
ITC_RUN_A_B_AB rOHEss,RUNcEHT HEAT_DIL_CORR
L I
| ION_STR_UNCERT b EES proToN
O A STOICH_FREE_PARAM
TG RESULT A BABID (K STOIGH PARAM e —
CELL_REACT CONC FIT_SD DELTA H_OBS 2
LOOKUP CELL_REACT_CONC_UNIT HEAT DIL_CORR [DELTA_H_OBS_UNCERT_2
ENTRYID (FK CELL_REACT VOL HEAT_ION_CORR K
) SYR_REACT_CONC NUM_PROTON K_UNCERT
SYR_REACT_CONC_UNIT DELTA H_OBS K2
SYR INJ_VOL DELTA_H_OBS_UNCERT
COMMENTS K ﬂ Seimn Go
RAW_DATA_FILE K_UNGERT DELTA_GO_UNCERT
DELTA_GO DELTA G0 2
DELTA_GO_UNCERT DELTA_GO_UNCERT 2
DELTA_HO DELTA
DELTA_HO_UNCERT DELTA:HO UNCERT
ggtm’cg UNCERT ‘ DETA o
\ CP_ DELTA Ho_UNGERT 2
ENTRY_KWORD T DELTA_SO DELTA_CP
KWORD ENTRY BETLFE??\A gTCH o ‘ DELTA_GP_UNCERT
ENTRYID (FK) ENTRYID NSTROVENTID R DETAGP U
s wi] (FK) DELTA_CP_UNCERT_2
_ (FK) ! SOLUTION_ID (FK) DELTA_SO
ENTRYDATE g COMMENTS DELTA_SO_UNCERT
MEAS_TECH
ENTRYTITLE DETA S0t
— ENTRYTITLE DELTA_SO__UNCERT 2
__ g DATAFIT_METH_ID (FK)
INSTRUMENTID (FK)
SOLUTION_ID (FK)
COMMENTS
- L —e

ENTRY_CITATION

*W

T

ITC_RUN 2A B A28
ENTRYID (FK)
ITC RUN 2A 8,428 D

CELL_REACT_CONC
CELL_REACT_CONC_UNIT
CELL_REACT_VOL
SYR_REACT_CONC
SYR_REACT_CONG_UNIT
SYR_INJ_VOL
COMMENTS
RAW_DATA_FILE

ENZYME_REACTANT_SET
ENTRYID (FK)
REACTANT SET_ID

ENZYME
E_POLYMERID (FK)
E_COMPLEXID (FK)

ENTRYID (FK)

ASSAY

[

KI_RESULT

ENTRYID (FK)
KI_RESULT ID
REACTANT_SET_ID (FK)

ASSAYID (FK)
SOLUTION_ID (FK)
DATA_FIT_METH_ID (FK)
INSTRUMENTID (FK)
|_CONC_RANGE
TE!
TEMP_UNCERT
PRESS
PRESS_UNCERT
P

PH_UNCERT

1C50

1090
IC_PERCENT DEF
IC_PERCENT

KI

KI_UNCERT
KS_UNCERT

Km

KM_UNCERT
VMAX
VMAX_UNCERT
KCAT
KCAT_UNCERT
delta_G
delta_G_UNGERT

BIOLOGICAL_DATA
COMMENTS

TQ

SUBSTRATE

ARTICLEID (FK)
ART_PURP

ARTICLE |

KWORD

KWORD
PERSON ARTICLEID (FK)
LASTNAME ARTICLE
FIRSTNAME ART_AUT ARTICLEID
e ARTICLEID (FK) JOURNALID (FK)|
AAUTHORID (FK) TITLE
INSTITUTION PMID
STRE
oY © VOLUME
e ¥ YEAR JOURNAL
POSTALCODE CONTACT EIARSSTTFP:AGGEE
TEL_NUM ABSTRACT JOUR
FAX_NUM
EMAIL

POLYMER
POLYMERID

TYPE
TOPOLOGY

WEIGHT
DISPLAY_NAME
SOURCE,ORGANISM
RES_COUNT
COMMENTS
SEQUENCE

o &
MONOMER

MONOMERID
SMILES_STRING]

‘ EMP_FORM
‘ DISPLAV,NAME

TYPE
WEIGHT
MOLFILE

T

COMPLEX_NAME
COMPLEXID (FK)
NAME

(]
coMPLEx,q!oMPENENT

ﬁ”f

COMPONENTID

OTHERDB
OTHERDBID

COMPLEXID (FK)

TYPE
POLYMERID (FK)
MONOMERID (FK)

-

DBNAME
DBCODE
POLYMERID (FK)
COMPLEXID (FK)
URL

COMMENTS
MONOMERID (FK)

COMPLEX
COMPLEXID

. J

—

TYPE

WEIGHT
DISPLAY_NAME
COMPONENT_COUNT|
COMMENTS

S_MONOMERID (FK)
S_POLYMERID (FK)
S_COMPLEXID (FK)
INHIBITOR
I_MONOMERID (FK)
I_POLYMERID (FK)
1_COMPLEXID (FK)

REVELENT
COMMENTS

|

MONOMER_STRUCT

CD_STRUCTURE

CD_FP16
MONOMERID (FK)

CD_ID

CD_SMILES
CD_FP1
CD_FP2
CD_FP3
CD_FP4
CD_FP5
CD_FP6
CD_FP7
CD_FP8
CD_FPY
CD_FP10
FPi1
CD_FP12
CD_FP13
CD_FP14
CD_FP15

S}
22

Fig. 1. Entity-relationship diagram of the relational BindingDB. See http://www.bindingdb.org/bind/entity report.html for details.

ITC experiments; i.e. the standard changes in free energy,
enthalpy, entropy and heat capacity, and the equilibrium
constant. They also include attributes specific to the
technique, such as flags indicating whether the data have
been corrected for the heat of dilution and heat of buffer

ionization, and whether the reaction stoichiometry is a
free parameter and, if so, its value. Foreign keys from
the INSTRUMENT and DATA_FIT_METH tables link to
details regarding the instrument and data fitting method
used to generate a set of results. One ITC thermodynamic

133

X.Chen et al.

result is usually generated from a series of calorimetry
runs, and a separate table, ITC_RUN_A_B_AB, is pro-
vided to store information about each separate run. This
table includes the attribute RAW _DATA _FILE for exper-
imentalists willing to upload the raw data for archival
and possible reanalysis by others; however, the details
of this attribute are not yet fully defined, since different
instrument/software combinations yield different data
files.

The enzyme inhibition results table KI RESULT allows
enzyme-inhibitor affinity to be specified in several differ-
ent ways, including Kj, ICsg and ICqg. Other IC values
are accommodated by allowing the user to specify a per-
cent inhibition, such as 80%, in IC_PERCENT_DEF and
then to list the ICgp in IC_PERCENT. The table also ac-
commodates other enzymatic data that may have come
out of the experiment, such as Kg, Ky, Kca, and Vipax-
In keeping with practice in the literature, concentration of
enzyme, substrate and inhibitor are described in ranges
instead of single values. An additional ASSAY table al-
lows for free-text description of the enzyme-inhibition as-
say method. The BIOLOGICAL_DATA attribute is set to
‘yes’ when the study that yielded the binding data also
provides biological data from cell culture, for example. As
for ITC results, instrument and data fitting method infor-
mation is provided via foreign keys to the INSTRUMENT
and DATA _FIT_METH tables.

Each reactant is identified in the results through one of
three foreign keys from the MONOMER, POLYMER and
COMPLEX tables; which one is used depends upon the
type of the reactant. The reactant tables define the com-
pounds studied, while the results tables add information,
such as supplier and purity, regarding the actual materi-
als used in an experiment. The reactant IDs are brought
directly into the ITC result tables, but are brought into a
separate table, ENZYME _REACTANT_SET for enzyme-
inhibition measurements to avoid extensive repetition of
experimental conditions for the large volume of data that
may be generated by high-throughput studies of one recep-
tor with multiple ligands. The following section describes
the treatment of reactants in more detail.

Reactants. The chemical entities involved in binding
reactions are defined in the reactant tables, while details
of the materials actually used, such as supplier and
purity, are given in the results tables. The BindingDB
is designed to accept binding data for a variety of
molecules, and different data structures are appropriate to
different types of molecule. Thus, as shown in Figure 1,
each reactant is classified and stored as a ‘monomer’, a
‘polymer’, or a ‘complex’. A monomer is a small organic
molecule, such as tyrosine or penicillin. Monomers are
identified not only by name but also by chemical structure.
Thus, the MONOMER table includes a SMILES string

(Weininger, 1988) and an MDL Molfile (http://www.mdli.
com/downloads/literature/ctfile.pdf) as attributes to enable
chemical structure queries (see section Integration of
nonSQL Query Functions). Proteins and polynucleotides
are stored as ‘polymers’ in BindingDB, and are identified
by name and sequence. The polymer sequences in the
relational database are exported into a FASTA file daily
in order to enable BLAST searching, as described in
Integration of NonSQL Query Functions. An assembly of
monomers and/or polymers is stored in BindingDB as a
‘complex’. The COMPLEX table contains no monomer
or polymer information, but only general information
for each complex, such as type and molecular weight.
The monomer and polymer constituents of a complex
are registered in the COMPLEX_COMPONENT table,
leaving the detailed description of each monomer and
polymer to be stored in the MONOMER and POLYMER
tables. This treatment of molecular complexes imposes the
computational cost of an additional level of query, but it
avoids data redundancy between monomers and polymers
and the components of complexes. It is not too expensive
computationally because the DBMS is efficient and the
number of table joins is still low.

Multiple names, or synonyms, for molecules are ac-
commodated with the MONO_NAME, POLY_NAME and
COMPLEX_NAME tables, which allow any number of
names to be stored for each reactant. For convenience,
however, a DISPLAY _NAME attribute is included in the
MONOMER, POLYMER and COMPLEX tables; this is
the name that will be displayed in query results. The DIS-
PLAY _NAME attribute creates a slight de-normalization
to the molecule tables since it repeats information in
the synonym tables. However, this denormalization is
convenient because it allows identification of a frequently
used attribute without an extra join operation.

When additional data for a molecule exist in one or more
other databases, references to these data can be stored in
the OTHERDB table. This includes the other database’s
name, the identifier of this molecule in that database, the
name of the molecule, and a URL link to that molecule.
We plan to establish dynamic links to other databases in
the future.

Reaction solution. The reaction solution is the medium
in which the binding reaction occurs. A solution is viewed
as consisting of a base solvent that may be a mixture
(e.g. ethanol/water), and that may contain multiple solutes
(e.g. NaCl) and a pH buffer. The reactants are not
considered to be part of the reaction solution. Solutions
are described with seven tables; the main SOLVENT,
SOLUTE and PHBUFFER are linked to the SOLUTION
table via associative (many-to-many) tables that specify
the concentration of each solution component in each
solution. This simple, generic data representation of

134

BindingDB

solution information of a reaction works well for the
current ITC and KI techniques and can be readily extended
if necessary.

References. References appropriate to each data en-
try are stored in the references group of tables. The
ARTICLE and ENTRY tables are associated via the
ENTRY _CITATION table. The PERSON table, which
stores information both about article authors and about
data entrants, is associated with the ARTICLE table via
the ART_AUTH table. To facilitate access to publications,
the ARTICLE table includes an attribute for the PubMed
reference ID. The current policy of the BindingDB is that
data may be deposited if and only if the detailed method
used to generate them is published in a refereed journal.
Therefore, it is possible to include unpublished data based
upon a published method. In such cases, ‘BindingDB’ is
used as the reference’s journal name and a BindingDB
article ID is assigned. Currently the experiment methods
are limited to the well established ITC and enzyme
inhibition methods.

XML data description

The BindingDB uses XML files for data transfer and
validation during the deposition process and as a human-
readable backup for the relational DBMS, where each
XML file contains one complete data entry. XML is
widely accepted in industry and in the scientific com-
munity, and its use is supported by a number of readily
available tools. The use of XML by the BindingDB is
thus expected to facilitate future exchanges of data with
other biomolecular and chemical databases. This section
briefly describes the BindingDB’s current DTD and its
relationship with the relational data model. The Data
Deposition Methods section describes how XML files are
used in the deposition process.

The literature provides few guidelines for how to define
an XML DTD that is compatible with a complex relational
database. The DTD must include the same data attributes
as the relational data model, but the organization of
the attributes must be different because XML files are
organized hierarchically, so table relations cannot be
directly transferred into the DTD. Here, the conversion
from relational tables to XML is based upon a description
of the hierarchical DTD as a tree of nodes, where the
terminal (leaf) nodes are nonkey attributes of the data
tables, and foreign key relations correspond to branches
in the tree. Note that this approach causes the XML
file to be completely denormalized in relational terms,
because it requires reused data to be repeated with each
use. In contrast, the relational data model reuses data by
forming multiple links from a single occurrence of the
reused item. Figure 2 illustrates this approach with the top
levels of the DTD’s data hierarchy for the BindingDB. The

root element of an ITC data entry includes data elements
(‘leaves’) such as the entry date and entry keywords, along
with nodes leading to lower levels of the hierarchy with
information on the entrant, literature citations and results.
The results node in turn has a number of data elements as
well as nodes with links to yet lower levels with further
details about the reactants, solution, instrument, etc. The
full XML definition can be accessed at http://www.
bindingdb.org/bind/deposition/xml/BindingDB.xml.

It is not a coincidence that the hierarchy of this XML
file is similar to that of the data deposition interface (see
section User interface for data deposition). Use of a similar
hierarchy facilitates the transfer of data collected via the
deposition interface into XML files, while the connections
between the DTD and the relational dictionary allow
transfer from XML files to the relational DBMS.

QUERY AND DATA RETRIEVAL
Integration of nonSQL query functions

The BindingDB provides two query techniques that are
outside the capabilities of pure SQL: chemical substruc-
ture/similarity search and sequence homology search. It
is possible to provide such capabilities within an object-
relational database management systems by creation
of new data types and methods; e.g. Relational Exten-
ders (IBM DB2), Cartridges (Oracle) and DataBlades
(Informix). However, this approach is still not straight-
forward (http://www.daylight.com/products/daycart.html)
and the methods are specific to each commercial database.
In order to minimize the dependence of BindingDB
upon the features of any specific commercial DBMS,
we have implemented these special queries with external
middleware.

Sequence homology. BindingDB uses BLAST to allow
users to find reactions involving proteins and nucleic acids
homologous to a user-specified protein or nucleic acid.
The search returns a modified BLAST report that contains
links to binding data associated with each homologous
sequence, allowing binding reactions to be accessed and
reviewed. This functionality is provided as follows.
Protein and nucleic acid sequences are archived in the
POLYMER table of the main DBMS. These sequences
are exported to external flat files containing protein
and nucleic acid sequences in FASTA format. The de-
scription line of each sequence flat files includes the
DISPLAY _NAME attribute of the molecule, and a general
identifier (gnl) ID containing the table ID for the matching
entry in the POLYMER table of BindingDB. The FASTA
files are regenerated daily from data in BindingDB
and preprocessed with the program Formatdb from the
BLAST2.0 executables available at NCBI (ftp://ncbi.nlm.
nih.gov/blast/executablessREADME.bls). Java Servlets
(http://www.javasoft.com/docs/books/tutorial/servlets/) in

135

X.Chen et al.

BindingDB Entry

ITC_Result

KI_Result

]

[|
= ‘ CellReactant ‘ ‘Syringeﬂeactam‘
I

|
‘ Solution

1 [
‘ ‘ DataFitMethod ‘ ‘ Instrument ‘ ‘ KI.Enzyme ‘ ‘ Kl.Substrate ‘ ‘ Kl.Inhibitor ‘ ‘

Solution

]

]

[|
‘Moncmer‘ ‘ Polymer ‘

[|
‘Complex‘ ‘ Solute ‘ ‘ Solvent ‘ ‘PHBuMer‘

‘OlherDB ‘ ‘OlherDB ‘ ‘Monumer‘ ‘ Polymer ‘ ‘OtherDB ‘

Fig. 2. Diagram of part of the DTD for a BindingDB XML file. Key nodes and only a few leaves (data attributes) are shown. Green:
general information regarding the entry. Blue: information regarding an ITC measurement. Grey: information regarding an enzyme inhibition
measurement. The full DTD is much more extensive; it includes, for example, Solute, Solvent and PHBuffer under KI.Result, and
includes Monomer, Polymer, and Complex information under SyringeReactant, KI.Substrate and KI.Inhibitor. The full DTD is available

at http://www.bindingdb.org/bind/deposition/xml/BindingDB.xml.

the BindingDB web-server use the Java Runtime class to
control the execution of Blastall and return the results in
HTML format with links from each polymer sequence to
the appropriate binding reactions in BindingDB.

Chemical structure, substructure and similarity. Bind-
ingDB uses JChem1.5 (ChemAxon, Hungary; Csizmadia,
2000) to provide chemical search capabilities for small
molecules: monomers alone and monomers in complexes.
When monomer information is deposited—either via a
chemical draw applet or by pasting an MDL Molfile into
the deposition forms—JChem generates chemical finger-
prints (http://www.jchem.com/doc/admin/GenerFP.html)
that are stored in the MONOMER_STRUCT table in
the relational database (see Figure 1). The number of
fingerprint attributes—currently 16—can be adjusted to
tune accuracy versus speed. A user can run a chemical
search by either drawing a target structure with a chemical
draw applet or by pasting an MDL Molfile into the
query form. When the query is run, the fingerprint of this
molecule is generated and searched with SQL against
those in the MONOMER_STRUCT table. Potential hits
are then retrieved and tested with a nonSQL algorithm.
Confirmed hits are linked to binding reactions through the
MONOMERID attribute in the MONOMER_STRUCT
table and are returned in a display page with links to the
binding measurements that involve each compound.

Linking directly to BindingDB from other
applications on the WWW

Hyperlinks can be made directly to binding measurements
in BindingDB from other web-sites or databases. For
example, the URL http://www.bindingdb.org/servlet1/
dbsearch/Summary ?entryid=161&itc_result_a_b_ab_id=

11&energyterm=kJ/mole provides direct access to En-
try 161, Result 11 in the table of ITC studies of reactions
of the form A + B < AB (i.e. ITC_.RESULT_A_B_AB).
The link connects to the Reaction Details page of the

specified reaction.

DATA DEPOSITION METHODS

It is envisioned that data will be deposited into the
BindingDB through at least three routes: literature
extraction and deposition by on-site BindingDB staff;
deposition of new data at or near publication time by
off-site experimentalists not otherwise associated with
the BindingDB; and high-throughput data uploads from
computer-controlled instrumentation. The data deposition
software is designed to support all three modalities.

BindingDB’s first data deposition interface was a
client—server tool for local use, developed with Oracle
Forms v6.0. Data are entered via a series of forms and
then saved into an intermediate database that contains
the same data attributes as the main database, but has
denormalized tables in order to simplify the connection
to the Forms client. Data in the intermediate database
are then transferred to the main database via a PL/SQL
script. This client—server approach has several advantages.
First, the Forms software provides tools to facilitate the
development process. Second, the resulting software
enforces table relations during deposition, thus minimiz-
ing concerns about data integrity. Finally, because the
client connects directly to the intermediate database, it can
reduce the work of deposition by allowing the user to view
and reuse existing data. However, this approach also poses
serious limitations. First, the Forms software is somewhat
inflexible and thus does not allow the user-interface to be
highly tailored for the application. More importantly, the
client must be installed on the user’s machine, making
it difficult to distribute and to keep updated. Although
Oracle Forms can generate a Java version of the client
that should, in principle, be highly portable, we found that
the resulting application executed very slowly and did not
work perfectly on all targeted platforms.

We have therefore developed a Web-based deposition

136

BindingDB

method that is compatible with widely used browsers.
In this method, data deposited via the Web are used to
generate an XML file (see section XML Data Description)
that is then parsed into the main database. It is expected
that ultimately all BindingDB data will be deposited
via this XML format, which will thus serve as a final
common pathway for data deposited via forms on the
WWYW, from automated instrumentation, and potentially
from customized forms created by other research groups
and database developers. For example, we are currently
collaborating with a manufacturer of microcalorimeters
to facilitate data deposition from their proprietary data
analysis and management software.

User interface for data deposition

Each entry in BindingDB has about 400 attributes that can
be entered by a depositor, though many are not mandatory.
It is a nontrivial task to design a good interface to collect
so many data efficiently. This section briefly describes the
user-interface, and then elaborates on design features that
enhance usability.

The main interface for data deposition consists of two
browser frames. The left-hand frame always displays the
list of data categories, and the right-hand frame displays
the data entry form appropriate to the selected category.
Each data categories on the left is hyperlinked to the
appropriate data form on the right. The categories are:
Entry, Entrant, Citation, Syringe Reactant, Cell Reactant,
Solutions, Data Fitting Method, Instruments and Results.
The top-down ordering of the links in the left-hand frame
is intuitively reasonable. More importantly, following this
order ensures that any data required for a given category
has already been entered in a previous category. However,
the user is also permitted to jump among categories so
long as data integrity would not be violated. For example,
the user is not able to specify a molecular complex until
at least one Small Molecule or Polymer has been entered,
because a Complex must be built from Small Molecule
and/or Polymer constituents. Similarly, links to Results
are inactive until mandatory information on Reactants,
Solutions, etc. have been entered and saved. The user
can check the completeness of an entry by clicking
‘Check and Submit’. The resulting report highlights which
mandatory data are missing. If none are missing, the user
can complete the submission process with one more click.

It is important that the user be free to begin a deposition,
exit from the web-site, and then resume the deposition
process without losing data. This capability is supported
through by assignment of a unique deposition ID to
each entry—completed or in progress—and storage of
incomplete entries in the DBMS as JavaBeans (see section
Implementation of WWW deposition method), along with
the appropriate deposition IDs.

Even after submission of an Entry is complete, data

can still be revised by the entrant (depositor). Thus, data
that are marked ‘Hold’ can be revised via the ‘Continue
Deposition’ link on the home page, while data that have
been submitted without a hold can be revised via the
‘Revise Existing Entry’ link. In the latter case, the user is
provided with a duplicate of the existing entry but with
a new ID. The user can then modify the entry, add a
description of the reason for the revision, and resubmit the
data. The old entry is retained but marked as obsolete to
prevent it from being returned on routine queries.

It is worth pointing out several features that are included
to promote usability and avoid errors during the submis-
sion process. First, the left-right category—detail interface
design gives the user an understanding of the overall
structure of the data and a task-oriented workflow, while
allowing free navigation among categories and protecting
against violations of data integrity. Second, drop-down
menus of standard items have been provided where
possible, such as for journal names. Different scientific
units are allowed, notably kcal/mole versus kJ/mol; the
software automatically converts into consistent internal
units for storage. Because experiments are often repeated
with only minor changes in conditions, a ‘Replicate Re-
sult’ option is provided to copy an existing Result record
into a new one, to be modified and saved. Finally, data
entered in one category that are used in another category
are made available in pull-down menus for convenience
and to ensure the formation of correct relational links.
For example, all of the reactants entered in the ligand,
polymer and complex categories are automatically placed
into pull-down menus in the results form. If the user
references a ligand, say, in the results form, and later
deletes the ligand that was used, a warning message is
generated.

Implementation of WWW deposition method

The overall structure of the web-accessible data deposition
method is as follows. On-line forms in standard HTML are
generated and updated dynamically with JavaServer Pages
technology (JSP: http://java.sun.com/products/jsp/). Data
entered by the user but not yet forming a complete entry
are configured as JavaBeans objects (see two paragraphs
below) and stored as binary objects in the Oracle DBMS.
The depositor can recall, view, edit and complete these
data using the JSP forms. When an entry is complete,
the data in the JavaBeans are used to generate an XML
file following the DTD outlined above. The Oracle XML
parser and the DTD are used to check for completeness
of mandatory data items, and XML files passing this
validation stage are then transferred by the parser into the
relational BindingDB database. A facility is also provided
to move data from an XML file into JavaBeans in the
DBMS so that data uploaded as XML files can be reviewed
and edited as needed via the on-line forms.

137

X.Chen et al.

JSP technology was selected as the method for gener-
ating dynamic forms because it runs on the server side
and can generate standard HTML pages, thus minimizing
download times and demands on the technical capabili-
ties of the user’s browser. Javascript code is used to warn
the user of simple errors during data entry, such as enter-
ing alphabetic characters in a numeric field. More com-
plex errors are handled by the following mechanism. The
JSP code can format and display the data in each form
displayed in the right-hand frame in one of three modes:
‘new’, ‘retry’ and ‘success’. When the user first accesses
a deposition page, it is shown in ‘new’ mode, with all data
fields blank. After some data have been entered and saved,
accessing the form causes the data stored in the corre-
sponding JavaBeans object to be retrieved, and the form
is displayed in ‘retry’ mode with the appropriate fields
filled out. The user is then able to modify and complete
the form. After all the data in a form are complete, the
user clicks the Save button, which activates the validation
methods of the appropriate JavaBeans object. If the data
pass the test, the JSP code presents the data in the ‘suc-
cess’ format which does not include any form fields but is
instead a plain report of the final data. (However, leaving
and then returning to the page also allows the user to fur-
ther edit data that have already been validated.) If the data
fail validation, the page is presented again in ‘retry’ for-
mat, with annotations indicating the problem items. This
design architecture is used for every form page and facili-
tates maintenance and modification of the pages and vali-
dation criteria.

As noted above, data entries are stored in the form
of JavaBeans objects (http://java.sun.com/products/
javabeans/) in the DBMS. Each form page—e.g.
entrant—is stored in one row of one database table,
along with the deposition ID of the entry. (This table is
not included in Figure 1 because it is only loosely tied to
the main database tables.) JavaBeans—Java classes coded
with predefined patterns for their property and method
information—are useful for several reasons. Thus, data
attributes can be saved and retrieved through their meth-
ods into and from property attributes and, as noted above,
validation methods are included in each JavaBean object.
Also, the introspection feature of JavaBeans automatically
matches the names of the bean properties with the names
of the form input elements. This feature alone is extremely
helpful since each deposition page is a complex form
containing a significant number of input elements.

Two steps are involved in the transfer of a validated
data set in the form of JavaBeans objects into the main
database. First, the data in the JavaBeans are used to
construct an XML file according to the DTD described
above. The creation of the XML file is a recursive process.
It starts at the top node, but all lower level nodes must
be completed before the current node is completed.

The deepest recursion has five levels: result/cell reac-
tant/complex/monomer/otherDB. Second, the XML file
is parsed into the relational database, as follows. Given
an XML file, the database’s ENTRY table is queried
to identify whether the file contains a new entry, based
upon deposition date, title, measurement technique and
comments. If this is a new entry, a new row is added
to the ENTRY table and a new entry ID is assigned.
The subsequent deposition sequence follows relation
rules since the data integrity is rigorously reinforced
by the relational database. The transfer of data from
XML into the DBMS is greatly simplified by the XPath
utility of the Oracle XML parser. The parser accepts
an XPath expression and returns all nodes or elements
that match it. For example, the command ‘selectN-
odes(‘BindingDB_ITC/Citation[Citation.Title=Binding
Studies of Lectins’]/@Author’)’ will return all authors
in the paper entitled “’Binding Studies of Lectins’. This
result can then be deposited into the PERSON table of the
database.

CONCLUSIONS AND PLANS

The BindingDB, now in operation, provides quick re-
sponse times and an intuitive and flexible interface,
according to user surveys. Continued development,
built upon the techniques described here, is proceeding
smoothly. The methods thus appear to be effective and
may be of interest for use in other scientific databases. We
invite further comments from users regarding all aspects
of the interface as well as the data specification. It is
hoped that such input will lead over time not only to a
widely used database, but also to a stable and generally
accepted data specification, presumably in the form of
an XML DTD, that will promote exchange and access to
binding data.

We also invite the deposition of new data. The relevant
policies are: (1) data are acceptable if the materials and
methods are published in a refereed journal; (2) freely de-
posited data will remain publicly accessible via the Bind-
ingDB so long as it is in operation. Ideally, experimen-
talists will deposit their new data in BindingDB concur-
rently with publication, so that most binding data become
accessible on the web. In the future, we plan to address the
issue of data quality further by establishing a mechanism
for data checking and curation. Also, it may be useful to
allow users to attach annotations to data in BindingDB,
subject to the requirement that the annotations themselves
be explained and supported in a refereed publication.

It will also be important to integrate BindingDB fur-
ther with other biomolecular databases. For example,
links can be made to different descriptions of binding
reactions in other molecular interaction databases like
ProNIT, DIP, BIND, and Relibase. Such links can take
the form of database IDs or URLs stored in BindingDB

138

BindingDB

or—perhaps preferably—dynamic queries performed in
related databases at run-time.

Finally, as BindingDB grows, it may be necessary to op-
timize performance to minimize response times. This can
be done by indexing the commonly searched attributes,
such as reactant name, author name and keywords, and by
distributing the processing of queries across several com-
puters. Network latencies can be minimized by the use of
geographically dispersed mirror sites.

ACKNOWLEDGEMENTS

This project is supported by NSF grant DBI-9808318 and
benefitted from early support by the National Institute of
Standards and Technology through the Standard Refer-
ence Data and Systems Integration for Manufacturing Ap-
plications programs. We thank Drs P.Bourne, H.Berman,
K.Breslauer, M.Doyle, N.Hodge, D.Pilch, E.Plum,
J Rumble, F.Schwarz, J.Westbrook, and W.Windsor for
many helpful discussions. We also thank ChemAxon for
facilitating access to the JChem software.

REFERENCES

Aberer,K. (1994) The use of object-oriented data models in
biomolecular databases. Conference on Object-oriented Com-
puting in the Natural Sciences. Heidelberg, Germany, pp. 3—13.

Achard,F., Vaysseix,G. and Barillot,E. (2001) XML, bioinformatics
and data integration. Bioinformatics, 17, 115-125.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389-3402.

Benson,D.A., Boguski,M.S., Lipman,D.J., Ostell,J., Ouellettee,B.F.,

Rapp,B.A. and Wheeler,D.L. (1999) GenBank. Nucleic Acids
Res., 27, 12-17.

CattellLR.G. (1996) The Object Database Standard: ODMG-93.
Morgan Kaufmann, San Francisco, CA.

Carazo,J.M. and Stelzer,E.H. (1999) The Biolmage Database
Project: organizing multidimensional biological images in an
object-relational database. J. Struct Biol., 125, 97-102.

Chen,X., Liu,M. and Gilson,M. (2001) Binding DB: a web-
accessible molecular recognition database. Com. Chem. High T.
Scr., in press.

Codd,E.F. (1972) Further normalization of the data base relational
model. In Rustin,R. (ed.), Data Base Systems. Prentice-Hall,
Englewood Cliffs, NJ, pp. 33-64.

Csizmadia,F. (2000) JChem: Java applets and modules supporting
chemical database handling from web browsers. J. Chem. Inf.
Comput. Sci., 40, 323-324.

Date,C.J. (1995) An Introduction to Database Systems. Addison-
Wesley, Reading, MA.

Hutsman,M., Richelle,J. and Wodak,S.J. (1991) SESAM: a rela-
tional database for structure and sequence of macromolecule.
Proteins, 11, 59-76.

Kumar,A., Cheung,K.H., Ross-Macdonald,P., Coelho,P.S., Miller,P.
and Snyder,M. (2000) TRIPLES: a database of gene function in
Saccharomyces cerevisiae. Nucleic Acids Res., 28, 81-84.

Nakata,K., Takai,T. and Kaminuma,T. (1999) Development of the
Receptor Database (RDB): application to the endocrine disruptor
problem. Bioinformatics, 15, 544-552.

Steedman,D. (1993) ASN.I The Tutorial and Reference. Technology
Appraisals. Twickenham, UK.

Weininger,D. (1988) SMILES: a chemical language and informa-
tion system. 1. Introduction to methodology and encoding rules.
J. Chem. Inf. Comput. Sci., 28, 31-36.

Westbrook,J.D. and Bourne,P.E. (2000) STAR/mmCIF: an ontology
for macromolecular structure. Bioinformatics, 16, 159—168.

Zhu,J. and Zhang,M.Q. (1999) SCPD: a promoter database of the
yeast Saccharomyces cerevisiae. Bioinformatics, 15, 607-611.

139

